
A Semantics for the Knowledge Interchange Format

Patrick Hayes
IHMC, University of West Florida

phayes@ai.uwf.edu

Christopher Menzel
Texas A&M University

cmenzel@philebus.tamu.edu

Abstract

We give a precise semantics for a proposed revised version of
the Knowledge Interchange Format. We show that
quantification over relations is possible in a first-order logic, but
sequence variables take the language beyond first-order.

Introduction

The Knowledge Interchange Format (KIF) has been
widely used in the fields of knowledge engineering and
artificial intelligence. Most notably, perhaps, it is
currently being used actively in the development of the
Standard Upper Ontology (SUO) project. There is good
reason for this, as there is need for a rigorous, computer-
readable knowledge representation framework like KIF
that is based clearly upon the solid foundations of first-
order logic. Due to its growing importance, there is now
a renewed push to make KIF an official international
standard. There is, in fact, a draft standard for KIF
(Genesereth et al. 98) that was developed by Michael
Genesereth, who has been KIF’s central developer to this
point. And it is a good start. However, we feel that the
version of KIF in that document falls short in several
respects. First, it is not sufficiently “modular” . That is, a
number of features of KIF – notably, metalinguistic
features, and number systems – are better off separated
from the basic logical apparatus of the language. Second,
the grammar of the language needs to be updated to allow
for such things as a arbitrary URIs and Unicode
characters. And finally, and perhaps most critically, a
comprehensive semantics for KIF needs to be developed –
this in turn will reflect back on the second task, as
semantical considerations will impact the grammatical
structure of the language. In this short paper, we will
focus on the last of these. That is, we will provide a
definition of the notion of a KIF language (somewhat
simplified for purposes here) and we will then propose a
semantics for that language. To avoid confusion, we will
refer to the new version of KIF here proposed as “SKIF” .

Overview

Before giving formal definitions we review the aspects of
SKIF that are of particular interest and chiefly serve to
distinguish it from earlier versions of KIF. SKIF follows
KIF in many respects. Notably,

1. SKIF uses a LISP-compatible syntax where every
well-formed expression is represented as an
Sexpression containing its immediate syntactic
constituents as elements (although a SKIF expression
is not assumed to be a LISP datastructure);

2. SKIF allows relations to be variably polyadic – i.e., it
allows them to be true of varying numbers of
arguments;

3. A syntactic corollary of the preceding feature is that
SKIF puts no restrictions on the number of terms that
can follow the term occurring in predicate position in
an atomic formula, that is, terms that can occur in
predicate position are not assigned a unique arity.

4. SKIF has a provision for quantifying over finite
sequences of arguments, using a special form of
variable. In SKIF these are called row variables,
which generalize the sequence variables in KIF.

As we will show, the full use of row variables in fact
takes the language beyond first-order expressiveness, but
there is a useful sublanguage which is strictly first-order.

However, some aspects of KIF have been omitted.
Notably:

1. SKIF has no special provision for stating definitions,
since definitions have no semantic content.

2. The semantics of row variables is worked out in
much greater detail than is the semantics of sequence
variables

3. Most notably, SKIF uses a free syntax, by which we
mean that no distinction is made between object

constants, function symbols, and relation symbols.
There are only terms, and any term may occur in
predicate position in an atomic sentence, in function
position in a function term, or in argument position in
at atomic sentence or function term.

This last difference between KIF and SKIF gives the
language a superficial appearance of a higher-order logic.
However, as we will show, this syntactic freedom in and
of itself (i.e., without the addition of row variables) does
not take SKIF beyond first-order expressibility. The
purpose of SKIF’s free syntax is to put as few syntactic
burdens as possible on users, and as few parsing burdens
as possible on compilers and other syntax processors.

SKIF syntax

SKIF is written using character sequences called words.
For now, we define a word to be any sequence of ASCII
characters which does not contain quote marks,
parentheses or whitespace, and which starts with some
character other than an integer or the symbols ? or @. A
more detailed syntax, based on Unicode, will be provided
in a fuller account of SKIF. This syntax will be also
extended in later versions to include such things as
documentation forms, restricted quantifiers, quoted
strings, importation conventions for including one
ontology inside another, and so on. To simplify the
statement of the semantics below, we will ignore these
extensions in this paper.

An ontology namespace N consists of a recursive set of
words.(Some words, e.g. the quantifier names, ‘and’ , ‘or’
and ‘not’ , and variable names, are reserved for use in
SKIF and cannot be included in a namespace.) The
elements of this namespace are constant names that refer
to the distinguished individuals, properties, classes, and
relations in the ontology. There are two kinds of
variables; a word prefixed with ? is an object variable; a
word prefixed by @ is a row variable. The syntax for
SKIF expressions is:

<term> ::= <objterm>|<rowvariable>
<objterm> ::= <objvariable>|
 <constant>|<fnterm>
<fnterm> ::= (<objterm> <term>*)
<sentence> ::= <atomsent>|<boolsent>|
 <quantsent>|<equalsent>
<equalsent> ::= (= <objterm> <objterm>)
<atomsent> ::= (<objterm> <term>*)
<boolsent> ::= (not <sentence>)|
 ({and|or} <sentence>*)|
 ({=>|<=>} <sentence> <sentence>)
<quantsent> ::= ({forall|exists}
({<objvar>|<rowvar>}+) <sentence>)

The SKIF language λΝ generated by the namespace N is
simply the set of expressions generated by the above BNF
when N is the set of all <constant>s. In particular, the
expressions generated by <sentence>, <constant>,
<term>, <objterm>, and <fnterm> are known as the
sentences, constants, terms, object terms, and function
terms of λΝ , respectively.

SKIF Semantics: Informal Discussion

We begin with an informal discussion of the semantics of
SKIF. There are two particularly important features of
KIF’s proposed syntax that deserve attention: (i) its free
syntax and its semantics, and (ii) the semantics of row
variables.

SKIF’s Free Syntax and Its Semantics

The model theory for SKIF is very close to a conventional
model theory for first-order logic, but has a few unusual
features which arise from the need to cope its free syntax.
In particular, since any name can be used as a function or
a relation name, the semantics must assign a truth-value to
expressions even if their function or relation symbol does
not denote a function or relation, and it must make sense
of terms whose function name refers to a relation which is
not functional. It must also be able to handle self-
application (i.e., an expression where the same name is
used to refer to a relation or function as to one of its
arguments.)

To handle all these issues, SKIF utilizes a basic semantic
device which associates an extension with every object in
the domain. The extension of an object is a set of n-tuples.
The extensions of individuals are always empty.
Structurally, therefore, in a given model, individuals are
indistinguishable from relations with empty extensions;
they are individuals rather than relations with empty
extensions in the model simply in virtue of having been
declared to be individuals.

The basic semantic rule is that an atomic sentence of the
form (t0 t1 ... tn) is interpreted as true just when the
extension associated with the denotation of t0 contains the
n-tuple consisting of the denotations of t1, ..., tn,
respectively. Sentences whose interpretation would
violate the “normal” interpretation rules (such as the use
of an individual name in a relation position) simply turn
out to be false, since the relevant extensions fail to supply
suitable values to make them true.

Since relations are distinguished from their extensions,
the extension of a relation may contain the relation itself
(or an n-tuple which contains it). This provides a way to
describe self-application without violating the axiom of

foundation. (Although the model theory is in fact
completely agnostic about whether relations and
extensions are distinct. The association could be identity,
although in that case the models would have be
understood relative to some non-well-founded set theory,
in general. We discuss this issue in more detail below.)

Notice that while a SKIF interpretation must provide a
denotation for every term in the language, and hence an
extension for every term used as a relation or function,
there is no presumption that the interpretation must
contain any particular universe of relations. In contrast,
classical higher-order logic requires that every domain
contain all relations over the domain of individuals;
higher-order syntax with the Henkin semantics, while
expressively only first-order, requires that they contain all
definable relations. This is why SKIF is not in any sense a
higher-order logic. In fact, as we will show, SKIF without
row variables is really only a notational variation of
conventional first-order logic.

One other complication needs attention. Since the
syntactic specification of the classes <atomsent> of
atomic sentences and <fnterm> of function terms are
identical, expressions of the form (<pred> <term>*) can
be used both to refer to an object (and hence take on the
guise of function term in an atomic sentence) and to
make an assertion (and hence themselves occur as an
atomic sentence). For instance, suppose that ‘ father-of’
denotes a 2-place relation, i.e., something whose
associated extension contains only pairs. If we want to
attribute some property to Cain’s father, it is convenient
to use functional notation:

(gardener (father-of cain)).

But simply to indicate that Cain’s father is Adam, an
atomic sentence is preferable:

(father-of cain adam).

SKIF follows KIF 3 in allowing both forms. However,
since SKIF does not declare symbols to be relational or
functional, there are two potentially troublesome cases to
consider: when a function is used inappropriately in an
atomic sentence, and when a term denoting a non-
functional relation is used in a function term. For an
instance of the first, what if we assert

(exists (?x) (father-of ?x))?

The answer is straightforward: taken as a sentence (as it
must be here), since ‘father-of’ expresses a 2-place
(functional) relation, ‘(father-of ?x)’ is simply false
for all values of ‘?x’ – father-of is not a property of any

single thing – and hence the quantified sentence above
evaluates to false as well.

The second potentially problematic case arises if an
expression denoting a non-total function or a non-function
(i.e., a relation which is not functional, or a non-relation)
is used in a function position in a function term (f t1 … tn).
In such cases, the term in question will not have a
“natural” denotation for at least some values of t1 … tn.
For instance, if ‘father-of’ denotes the father-of
relation in a model of the Genesis myth, then ‘(father-
of adam)’ is undefined, as Adam had no biological
father. This is problematic, as undefined terms are not
permitted in classical logic. Hence, in such cases, an
arbitrary value is value is assigned to the function term
when it occurs in an atomic sentence – we will choose the
denotation of the term occurring in function position.
This choice could lead to some odd side-effects – for
instance, ‘((father-of adam) cain adam)’ and
‘(exists (?x) (= plus (plus ?x ?x))’ turn out
true. However, such side-effects are either innocuous, or
can be rendered innocuous in an ontology simply by
restricting the quantifiers in axioms carefully to ensure
that one is only talking things that are “genuinely” in the
range of the function in question. (The things that are
genuinely in the range of a function F are simply those
things b such that 〈a1,…,an,b〉 ∈ ext(F) for some a1,…,an.
These objects can be identified in SKIF by means of row
variables:

 (forall (?r ?y)
 (=> (relation ?r)
 (<=> (in-range ?y ?r)
 (exists (@args)

 (?r @args ?y))))).

The functionality of a relation can be expressed as
follows:

(forall (?r)
 (=> (relation ?r)
 (<=> (functional ?r)
 (forall (@args ?y ?z)
 (=> (and (?r @args ?y)
 (?r @args ?z))
 (= ?y ?z))))))

These two axioms together, then, enable one to identify
the objects in the range of a function (i.e., functional
relation) and talk about them alone in axioms involving
terms that denote that function.

The semantics of row variables

As noted, like KIF, SKIF allows relations and functions to
be variably polyadic. Hence, to capture this fact
syntactically, the same symbol can legitimately occur in
predicate position in different atomic sentences with
different numbers of arguments. To state general
properties of such relations, one needs to be able to
quantify over a variable number of things at once. In
KIF, this was achieved by assuming that expressions were
LISP list structures and allowing a form of quantification
over the ‘ tails’ (CDRs) of these expressions. SKIF uses a
similar but somewhat more abstract device by allowing
quantification over arbitrary n-tuples of objects. Such a n-
tuple corresponds to a row of symbols in an expression,
such as the row of three symbols ‘a b c’ in the
expression ‘(R a b c d)’ . A row variable has such
rows of terms as instances in exactly the same way as an
object variable has single terms as instances, so that the
above expression would be an instance of ‘(R @x d)’ .
Row variables provide a mechanism for talking about the
series of objects indicated by arbitrary rows of terms,
without actually putting those series of objects themselves
in the universe of discourse. Thus, quantification of row
variables provides roughly the same expressive power in
the language as is often achieved informally in the
metalanguage by the use of three dots to indicate a
missing sequence of arbitrary length.

Rows can be thought of simply as a special category of n-
tuples. Several distinctive properties of rows should be
highlighted here, however. First, they are finite. Since
finiteness is not first-order expressible, one might expect
that introducing a quantifier which ranges over finite
entities will take the logical language beyond first-order
expressiveness, and indeed this is the case. Second, a
singleton row is indistinguishable from its sole element.
Third, there is no way to include one row as a single item
in another row: rows have no nested structure, unlike lists,
sets, or logical terms.

SKIF Semantics: Formally Speaking

Rows

First, some definitions. For any set A, let An be the set of
sequences of length n of members of A, i.e. functions
from the set { 0, 1, …, n-1} of ordinals <n into A. (It
follows that A0 = { ∅} since the set of ordinals < 0 is
empty.) We call the members of An n-tuples over A. We
will write the n-tuple { 〈0,a0〉, 〈1,a1〉, …, 〈n-1,an-1〉} as
〈a0,a1,…,an-1〉. In particular, we will sometimes refer to ∅
as ‘ 〈〉’ when thinking of it as a 0-tuple. Let A* be the set
of all n-tuples over A, for all n, i.e., A* =

�

n<ωAn. We will
call the members of A* tuples over A. We want to

consider n-tuples in which there is no distinction between
1-tuple and its (sole) member, so we define an
equivalence relation ≈ on Α∪Α* by : 〈x〉 ≈ x, and let A**
be the set of equivalence classes on Α∪Α* under ≈. We
call the members of A** rows over A or A-rows. Notice
that any element of A constitutes a singleton row (this
makes the technical statement of the model theory
somewhat simpler). If s1, …, sn are rows, then cc(s1,…,sn)
is the concatenation of those rows; that is, the row whose
length is the sum of the component rows and which
consists of the elements of those rows in consecutive
order. Notice that a concatenation of objects is simply the
row of those objects, so that cc is also the row-forming
function. We define the value of cc on an empty list of
arguments to be the 0-tuple 〈〉.

These conventions have some consequences for the
semantics. In particular, if a SKIF object expression could
denote a row, the language would be ambiguous; so we
impose a semantic restriction that a SKIF domain cannot
contain the rows that are used in the semantic definition.
(It may contain isomorphic structures, but they cannot be
identical.) If this restriction is felt to be onerous, we can
simply declare rows to be a special category of structures
declared by fiat to be isomorphic to the rows described
here, but not defined to be identical to their set-theoretic
description.

Interpretations

Now, let N be an ontology namespace, and let λΝ be the
language generated by N. An interpretation of λΝ is a
triple 〈D,ext,V〉 such that

• D = E ∪ R is a nonempty set, where E ∩ R is
empty.

• ext is a function on D such that, for all r in R,
ext(r) ⊆ D** , and for all e in E, ext(e) = ∅.

• V is a function that maps the constants and object
variables of λΝ into D1 and the row variables of
λΝ into D** .

Intuitively, R is the set of relations in an ontology
(functions are a particular kind of relation, and properties
can be thought of as 1-place relations), and E is the set of
individuals. Thus, ext maps each relation r to its
extension, i.e., to a set of rows of elements of D. Notice
that the lengths of the rows in the extension of a relation
needn’ t be identical; relations, that is to say, can be
variably polyadic. For convenience, individuals are
assigned an empty extension. Finally, V is the semantical
mapping from the terms into entities of an appropriate

sort. Specifically, V maps constants and object variables
to objects in the domain of discourse D, and row variables
into rows, i.e., n-tuples of objects in D. Since D ⊆ D** ,
i.e., single objects are identical to their singleton rows, V
can be said to map all terms to rows of objects.

Truth under an Interpretation

Several more definitions will be helpful for defining truth.
First, for an interpretation I = 〈D,ext,V〉, and for any
variables ν1, …, νn, say that an interpretation I′ =
〈D,ext,V′〉 is an I-variant on ν1, …, νn if V′ differs from V
at most in what it assigns to one or more of ν1, …, νn.
Second, define a relation r to be functional on 〈e1, …, en〉
just in case there is exactly one object e in the domain of
discourse D such that 〈e1, …, en,e〉 is in the extension
ext(r) of r.

Now let ϕ be an expression of λΝ. We have already
defined V(ϕ) when ϕ is a name or a variable. But we also
need to define it for the case when ϕ is a functional term.
This will be included in the following general definition
of truth for λΝ.

1. If ϕ is a functional term (F t1 ... tn), then there are
two cases to consider. If V(F) is functional, then V(ϕ)
is the unique e such that cc(V(t1),…,V(tn),e) ∈
ext(V(F)); otherwise, V(ϕ) = (V(F)). This latter choice
is arbitrary, as noted above.

2. If ϕ is an atomic sentence (P t1 ... tn), then ϕ is true
under I , just in case cc(V(t1),…,V(tn)) ∈ ext(V(P)).

3. If ϕ is (= t1 t2), then ϕ is true under I just in case
V(t1) = V(t2).

4. If ϕ is (not ψ), then ϕ is true under I just in case ψ
is not true under I.

5. If ϕ is (and ψ1 … ψn), n≥0, then ϕ is true under I
just in case, for all positive integers i≤n, ψi is true
under I.

6. If ϕ is (or ψ1 … ψn), n≥0, then ϕ is true under I
just in case, for some positive integer i≤n, ψi is true
under I.

7. If ϕ is (=> ψ θ), then ϕ is true under I just in case ψ
is not true under I or θ is true under I.

8. If ϕ is (<=> ψ θ), then ϕ is true under I just in case
either both ψ and θ are true under I or neither is.

9. If ϕ is (forall (ν1 … ν n) θ), then ϕ is true under
I just in case θ is true under all I-variants on ν1, …,
νn.

10. If ϕ is (exists (ν1 … ν n) θ), then ϕ is true under
I just in case θ is true under some I-variant on ν1,
…, νn.

Most of the above is standard; all the originality is in the
first two clauses. The complexity of the clause for object
terms arises from the need to specify a semantic value for
the functional term when it has no intuitively correct
value, as discussed earlier. Both clauses use the notion of
a concatenation of rows to form the appropriate n-tuple of
arguments which is supplied to the function or relation.
For conventional first-order logical syntax this would be
needlessly complicated (although correct), but the use of
row variables requires this much care. Notice that this
definition extends to empty rows, so that an atomic
sentence of the form (P) will be true just in case the
empty sequence 〈〉 ∈ ext(V(P)). Note also that as special
cases of clauses 5 and 6, ‘(and)’ is vacuously false, and
‘(or)’ vacuously true, under any interpretation.

Extensional and intensional interpretations

This semantics makes a conceptual distinction between
relations and their extensions. This has a number of
technical advantages, notably that of giving a denotation
to expressions involving circular applications, such as (in
the most extreme case)

(R R)

This is true under I just in case I(R) denotes e and e ∈
ext(e), which of course is quite an unexceptionable
condition. However, if we were to insist that relations
were identical to their extensions, this would amount to
the requirement that e ∈ e, in direct contradiction with the
axiom of foundation. There are several possible responses
to this observation, and the authors do not agree on which
is preferable. They do agree, however, that a merit of the
SKIF model theory is that it is entirely agnostic about
which stance to take.

On one view, to distinguish between relations and their
extensions is philosophically proper, and so nothing more
needs to be said; particularly as the SKIF model theory
can be derived from a more conventional Tarskian
interpretation of a sublanguage, as we show below.

On another view, it is proper to think of relations in a
first-order model theory as being identical with their

extensions. This can be partly expressed by an axiom of
extensionality:

(forall (?r ?s)
 (=> (forall (@x)(<=>(?r @x)(?s @x)))
 (= ?r ?s)))

which asserts, in effect, that ext is 1-to-1; call this a
weakly extensional interpretation, and an interpretation in
which ext is identity a strongly extensional interpretation.
There is no way in SKIF to write an axiom which
guarantees strong extensionality, but on the other hand
any weakly extensional interpretation defines a strongly
extensional one in which every sentence has the same
truth value, so if strong extensionality is considered
desirable, it may be imposed by stipulation. The cost, of
course, is that one has then to understand the entire
semantic description relative to a “non-well-founded” set
theory which rejects the axiom of foundation, such as that
described by Peter Aczel (1988). This makes no
difference to the actual model theory as stated, but some
may find the conceptual burden too much to bear.

To sum up, there are three options regarding the
interpretation of the semantics. A nonextensional
interpretation, or weak extensionality, are always options;
if one wishes to impose strict extensionality, and if the
language being considered uses circular application, then
one must interpret the model theory relative to a non-
well-founded set theory. The formal properties of SKIF
and its model theory work the same way in all three cases.

Extensions to SKIF

The SKIF language described here is a minimal language;
we envision that the final form of SKIF will contain
several syntactic extensions designed for ease of use. A
complete version of the language will be given elsewhere,
but currently proposed extensions include, but are not
limited to, the following. Only the last one changes the
essential logical character of the language.

Documentation wrappers

The language will have special syntactic forms for
attaching documentation strings and other “ tags” to
expressions and assertions. (Although logically trivial,
this complicates the syntax since such strings may contain
otherwise “ illegal” characters.) We also expect to define
the language to allow Unicode character strings in the
UCS-2 subset, making it more appropriate for
international use.

Restricted quantification

Restrictions on quantifiers can be written inside the
quantifier syntax, so that for example one can write

(forall (?x (human ?x)) (bipedal ?x))

in place of

(forall (?x)(=>(human ?x)(bipedal ?x)))

Class heirarchies and sorting

SKIF follows normal logical practice in treating
properties as unary relations, but deviates from the usual
first-order logical tradition by also treating them as
objects. Other languages treat properties as classes,1 and
some logical languages allow certain classes to be
distinguished as “sorts” (where sort membership can be
checked by the parser without performing general
inference.)

 Much of this can be axiomatized within SKIF as
described here, but a fuller version of SKIF will provide
syntactic devices to allow the user to specify sort
information in a uniform framework.

Namespaces and importation

We will provide syntactic machinery for declaring
namespaces, maintaining namespace separation, and
importing ontologies from remote sources (such as web
sites or external files). None of these change the basic
logical properties of the language. However, some
extensions are proposed which do give the language
significantly greater expressive power, particularly a
meta-extension:

Meta-extension

This will provide syntactic machinery for describing and
quantifying over linguistic expressions, including those of
the language itself, and for asserting the truth of such
expressions. We expect to use the ‘wtr’ predicate from
KIF as a suitable truth predicate to avoid the well-known
paradoxes.

1 We here use ‘class’ as the term is used in the description
logic literature; cf. (McGuinness & Patel-Schneider 1998)
not in the sense of ‘proper class’ from set theory.

Mapping SKIF into conventional logic

SKIF can be mapped into a more conventional logical
language in two stages. We first describe an embedding
from SKIF into a restricted SKIF language which has a
conventional clear distinction betwen object, function and
relation symbols of fixed arity, and then give a further
truth-preserving mapping from SKIF into a similar logic
without row variables. These mappings provide an
intuitively useful account of SKIF, establish its basic
logical properties, and illustrate how the semantic
complexities (notably the relation/extension distinction
and the central use of row-concatenation) arise.

Holding and applying

To “ tidy up” the free syntax of SKIF we utilize a familiar
trick for writing “higher-order” syntax into a first-order
notation, which makes use of a denumerable set of special
relations Holds-0, Holds-1, ... and function symbols
App-0,App-1,... (one for each natural number), and,
for a given sentence ϕ we simply rewrite every term
occurrence of an expression of the form

 (t0 t1 ... tn)

as

 (App-n t0 t1 ... tn)

and every sentential occurrence as

 (Holds-n t0 t1 ... tn),

with these translations applied recursively to every
subexpression in the obvious way. If θ (or λΝ) is an
expression (or a language on N), let H(θ) (or H(λΝ)) be
the expression (or language) defined by the above
translation; we will call this the holds expression
(language) corresponding to θ (λΝ) .

In any holds language, all the symbols of the original
SKIF language have become individual names; all the
function, relation and individual names are distinct, and
each function symbol and relation symbol has a unique
arity; and no variables or nonatomic terms occur in the
relation or function position. Apart from the presence of
row variables, therefore, a holds language is a
conventional first-order language. To prove this, it can
easily be shown that any interpretation I of an SKIF
language can be transformed into a standard first-order
interpretation I* of the corresponding holds language in a
truth preserving way (i.e., sentences of SKIF have the

same truth value in I that their counterparts under H have
in I*).

SKIF and Infinitary Logic

As noted, row variables extend SKIF’s expressive power
beyond that of simple first-order logic. Specifically, they
give it the expressive power of an infinitary sublanguage
of the infinitary logic Lω1ω. In this section we make this
explicit.

To keep the exposition simple, we will first define a truth-
preserving mapping from SKIF to an infinitary logic
without row variables. The resulting language retains the
other odd features of SKIF, such as variable polyadicity,
so is not strictly a sublanguage of Lω1ω, but if this
mapping is composed with the transformation H
described in the previous section, the result is strictly
within Lω1ω. We will call this mapping K; the mappings
H and K commute.

The intuitive idea of the K mapping is that any instance of
a row variable @x is also a row of instances of a row of
object variables ν1 ... νn, so the effect of universally
quantifying a row variable can be obtained by conjoining
an infinite series of expressions representing all the
possible universal quantifications of those rows using
object variables; and similarly , of course, by disjoining
such a series for an existential quantifier. An expression
of the form

(forall (@x)(foo @x))

thus will map into an infinite conjunction of the form

(and (foo)
 (forall (?x1)(foo ?x1))
 (forall (?x1 ?x2)(foo ?x1 ?x2))
 (forall (?x1 ?x2 ?x3)
 (foo ?x1 ?x2 ?x3))
 ...)

To state this formally it is convenient to assume that row
quantifiers are treated separately, with each quantifier
binding only a single row variable. Obviously every
expression has an equivalent expression in this row-
separated form.

Let λΝ be a SKIF language in row-separated form. We
will map λΝ into an infinitary language ΛΝ over the same
vocabulary. The complex formulas of ΛΝ will be as usual
for such a language; specifically, ΛΝ allows countable
conjunctions and disjunctions (but only finite quantifier
strings). Given a countable set S of formulas of ΛΝ, we
will indicate their conjunction by ∧S and their disjunction

by ∨S. If S is indexed by the finite ordinals, we will
indicate the conjunction of the members of S by ∧i<ωS and
their disjunction by ∨i<ωS.

For any SKIF expression θ and for any row variable ρ and
object variables ν1, …, νm, let θ [ρ/ν1 … νm] be the result
of replacing every occurrence of ρ in θ with the row ν1
… νm. (Notice that this refers to all occurrences of ρ ,
even those inside quantifiers.) Then the translation
scheme K from λΝ into ΛΝ is defined recursively as
follows:

• If ϕ is any word, then K[ϕ] = ϕ.

• if ρ is a row variable and ϕ is (forall (ρ) ψ),
then K[ϕ] =
∧m<ω{(forall(ν1 … νm)K[ψ[ρ/ν1 … νm]]) } ,
where, for each m<ω, ν1, …, νm are the m
alphabetically earliest object variables that do not
occur in ψ.

• If ρ is a row variable and ϕ is (exists (ρ) ψ),
then K[ϕ] =
∨m<ω{(exists(ν1 … νm)K[ψ[ρ/ν1 … νm]])} ,
where, for each m<ω, ν1, …, νm are the m
alphabetically earliest object variables that do not
occur in ψ.

• Otherwise, K[ϕ] is the expression got by applying K
to every well-formed immediate subexpression of ϕ.

It is easy to see that K is truth-preserving: the statement of
the truth-conditions for universal row quantification refer
to all finite rows, which can be transcribed directly into
the truth-conditions for the infinitary conjunction, each of
whose conjuncts states the analogous condition for one of
the possible finite lengths of the row; and similarly for the
existential case.

It is almost equally clear that the full meaning of the row
quantifier could not be captured by any finite
subexpression, since any such expression would omit
some case that might falsify the infinite conjunction.
Hence the row quantifiers take the language beyond strict
first-order definability. We have not yet fully investigated
the extent to which this extra expressiveness may take the
language, but some facts are clear.

Given any SKIF language, applying both the mappings K
and H (in either order) yields a sublanguage of the well-
known infinitary logic Lω1ω. However, these mappings
only utilize a sublanguage of Lω1ω , which we will call
SKIFω1ω, rather than the full language, and there is some

hope that this sublanguage may be computationally more
tractable than full Lω1ω.

Lω1ω allows arbitrarily complex conjunctions and
disjunctions, while SKIFω1ω only uses a highly
simplified subcase in which each component can be
generated from the previous one by a simple addition of
one new variable. We have not yet fully investigated the
tractability of the SKIFω1ω sublanguage relative to Lω1ω,
but there is some hope that computationally useful
properties may be obtained. Lω1ω itself is among the
more tractable infinitary languages, and for example
admits a completeness theorem from countable sets of
premises. To illustrate the problems, however, we note
that skolemisation is not possible in general for row
quantifiers, as can easily be seen by applying the K
mapping to a sentence containing an existential row
quantifier inside the scope of a universal row quantifier.

A Useful Sublanguage and Its Limitations

The fact that SKIF (and indeed KIF, as may be easily
checked by considering a similar mapping from sequence
variables into Lω1ω) is not first-order, may be reasonably
considered to be Bad News. Moreover, the generalization
of KIF sequence variables to SKIF row variables,
although theoretically cleaner, has some computational
disadvantages, since the use of row variables in general
position makes unification very difficult: because row-
concatenation is associative, simple pairs of expressions,
such as ‘(r a @x)’ and ‘(r @x a)’ , may have infinitely
many most general unifiers. However, there is a restricted
sublanguage of SKIF which avoids most of these
difficulties and but may still be of general utility, which
we will call “schema form” since it corresponds to the use
of schemas in first-order logic.

An SKIF sentence is in schema form if row variables are
(1) restricted to universal quantifiers at the top level of
any assertion (i.e., not within the scope of any expression
other than a universal quantifier), and (2) only occur in
the final position of any atomic sentence or relational
term and (3) if the sentence is used only as an assertion,
and never posed as a theorem to be proved.

The second restriction makes row variables similar in
usage to sequence variables in KIF, i.e., they always
intuitively refer to the “ tails” of argument lists. In practice
this is not usually felt to be an onerous restriction,
although it does sometimes force axioms to be written in a
more complex style. It has the merit of guaranteeing that
unification patterns that create the above-mentioned
difficulties cannot arise. (There may be less restrictive
conditions which also supply such a guarantee: we have
not investigated this in detail.)

The first restriction is rather more dramatic, in that it
makes this sublanguage first-order expressible. To see
this, notice that any such “ top-level” universal
quantifications can be mapped by K into a top-level
infinitary conjunction, which in turn is equivalent to an
infinite set of first-order sentences. By the compactness
theorem, any consequence of this set is also a
consequence of some finite subset of them, so this infinite
set can be treated as strictly first-order, when used as an
assertion. (Notice however that this argument would
break down if the sentence were posed as a theorem, since
it could only be proved from an infinite number of
premises.) Since free variables in assertions are taken to
be universally quantified, an assertion in schema form
may be thought of as having only free row variables.
Notice also that skolemisation can be applied to
expressions in schema form, uisng a polyadic skolem
function:

 (forall (@r) (exists (?x)(...?x...)

can be transformed into

(forall (@r) (... (f @r) ...)

All this amounts to the observation that a first-order
schema does not extend the language beyond first order if
it used solely as a “source” of axioms, standing in place of
a recursively infinite set of assumptions. Schema form
provides a general-purpose notation for writing
computationally tractable first-order schemas in this
sense, and also makes clear their expressive limitations.

In particular, notice that there is no way to describe the
integers, or to guarantee finiteness, using such a schema.
For example, since rows are defined to be finite, one
might think that one could use unary arithmetic to define
integers, using a row of length n as a numeral to represent
the number n. It is indeed easy to write the relevant
axioms in SKIF:

(equinum 0)

(forall (@r ?x ?y)
 (<=> (equinum (succ ?x) ?y @r)
 (equinum ?x @r)))

(<=> (finite ?x)
 (exists (@r)(equinum ?x @r)))

but, as is easily checkable, the final biconditional cannot
be put into schema form.

In general, the common use of “ recursive” definitions in
SKIF (and KIF), as in the second axiom above, is always
hostage to the expressive limitations of the language. If

row quantification is considered to be part of the
language, then finiteness is expressible and such recursive
definitions can be considered to be fully specified; but if
the language is restricted to first-order, then the language
cannot possibly express their full import. Just as with
schemas, they can be considered to be “generators” of an
infinite set of first-order axioms, but this only provides a
lower bound on their first-order models, and cannot rule
out nonstandard models in which quantification over the
“ recursively defined” constructs (integers, in the above
case) also range over nonstandard elements which would
be excluded by a least-fixed-point semantics or by the
expressive power of an infinitary logic. So for example,
the definition of lists in KIF (reference KIF3 manual) is in
fact incomplete, in that it fails to restrict the models to
only the finite lists.

Acknowledgements

This work arose from a group effort to create a revised
version of KIF and has benefitted from input from our
colleagues in the group. The extensionality axiom was
provided by Bill Andersen.

Hayes recognises the partial support of DARPA under
contract # F30602-00-2-0577.

References

Aczel, P. (1988) “Non-well-founded Sets,” CSLI Lecture
Notes, number 14

Bell, J. (2000) “ Infinitary Logic” , Stanford Encyclopedia
of Philosophy, http://plato.stanford.edu/entries/logic-
infinitary.html

Genesereth, M. et. al. (1998), “Knowledge Interchange
Format,” draft proposed American National Standard
(dpANS), NCITS.T2/98-004,
http://logic.stanford.edu/kif/dpans.html

McGuinness, D. L. and Patel-Schneider, P. F. (1998)
“Usability Issues in Description Logic Systems,”
Proceedings of the Fifteenth National Conference on
Artificial Intelligence, Madison, Wisconsin.

