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Abstract 

We give a precise semantics for a proposed revised version of 
the Knowledge Interchange Format.  We show that 
quantification over relations is possible in a first-order logic, but 
sequence variables take the language beyond first-order. 

Introduction 

The Knowledge Interchange Format (KIF) has been 
widely used in the fields of knowledge engineering and 
artificial intelligence.  Most notably, perhaps, it is 
currently being used actively in the development of the 
Standard Upper Ontology (SUO) project.  There is good 
reason for this, as there is need for a rigorous, computer-
readable knowledge representation framework like KIF 
that is based clearly upon the solid foundations of first-
order logic.  Due to its growing importance, there is now 
a renewed push to make KIF an official international 
standard.  There is, in fact, a draft standard for KIF 
(Genesereth et al. 98) that was developed by Michael 
Genesereth, who has been KIF’s central developer to this 
point.  And it is a good start.  However, we feel that the 
version of KIF in that document falls short in several 
respects.  First, it is not sufficiently “modular” .  That is, a 
number of features of KIF – notably, metalinguistic 
features, and number systems – are better off separated 
from the basic logical apparatus of the language.  Second, 
the grammar of the language needs to be updated to allow 
for such things as a arbitrary URIs and Unicode 
characters.  And finally, and perhaps most critically, a 
comprehensive semantics for KIF needs to be developed –  
this in turn will reflect back on the second task, as 
semantical considerations will impact the grammatical 
structure of the language.  In this short paper, we will 
focus on the last of these.  That is, we will provide a 
definition of the notion of a KIF language (somewhat 
simplified for purposes here) and we will then propose a 
semantics for that language.  To avoid confusion, we will 
refer to the new version of KIF here proposed as “SKIF” .  

Overview 

Before giving formal definitions we review the aspects of 
SKIF that are of particular interest and chiefly serve to 
distinguish it from earlier versions of KIF.  SKIF follows 
KIF in many respects.  Notably,  

1. SKIF uses a LISP-compatible syntax where every 
well-formed expression is represented as an 
Sexpression containing its immediate syntactic 
constituents as elements (although a SKIF expression 
is not assumed to be a LISP datastructure);  

2. SKIF allows relations to be variably polyadic – i.e., it 
allows them to be true of varying numbers of 
arguments; 

3. A syntactic corollary of the preceding feature is that 
SKIF puts no restrictions on the number of terms that 
can follow the term occurring in predicate position in 
an atomic formula, that is, terms that can occur in 
predicate position are not assigned a unique arity. 

4. SKIF has a provision for quantifying over finite 
sequences of arguments, using a special form of 
variable. In SKIF these are called row variables, 
which generalize the sequence variables in KIF.  

As we will show, the full use of row variables in fact 
takes the language beyond first-order expressiveness, but 
there is a useful sublanguage which is strictly first-order. 

However, some aspects of KIF have been omitted.  
Notably: 

1. SKIF has no special provision for stating definitions, 
since definitions have no semantic content.  

2. The semantics of row variables is worked out in 
much greater detail than is the semantics of sequence 
variables 

3. Most notably, SKIF uses a free syntax, by which we 
mean that no distinction is made between object 



constants, function symbols, and relation symbols.  
There are only terms, and any term may occur in 
predicate position in an atomic sentence, in function 
position in a function term, or in argument position in 
at atomic sentence or function term. 

This last difference between KIF and SKIF gives the 
language a superficial appearance of a higher-order logic. 
However, as we will show, this syntactic freedom in and 
of itself (i.e., without the addition of row variables) does 
not take SKIF beyond first-order expressibility. The 
purpose of SKIF’s free syntax is to put as few syntactic 
burdens as possible on users, and as few parsing burdens 
as possible on compilers and other syntax processors. 

SKIF syntax 

SKIF is written using character sequences called words. 
For now, we define a word to  be any sequence of ASCII 
characters which does not contain quote marks, 
parentheses or whitespace, and which starts with some 
character other than an integer or  the symbols ? or @. A 
more detailed syntax, based on Unicode, will be provided 
in a fuller account of SKIF. This syntax will be also 
extended in later versions to include such things as 
documentation forms, restricted quantifiers, quoted 
strings, importation conventions for including one 
ontology inside another, and so on. To simplify the 
statement of the semantics below, we will ignore these 
extensions in this paper. 

An ontology namespace N consists of a recursive set of 
words.(Some words, e.g. the quantifier names, ‘and’ , ‘or’  
and ‘not’ , and variable names, are reserved for use in 
SKIF and cannot be included in a namespace.) The 
elements of this namespace are constant names that refer 
to the distinguished individuals, properties, classes, and 
relations in the ontology.  There are two kinds of 
variables; a word prefixed with ? is an object variable; a 
word prefixed by @ is a row variable. The syntax for 
SKIF expressions is: 

<term>      ::= <objterm>|<rowvariable> 
<objterm>   ::= <objvariable>|      
                <constant>|<fnterm> 
<fnterm>    ::= (<objterm> <term>*) 
<sentence>  ::= <atomsent>|<boolsent>|             
                <quantsent>|<equalsent> 
<equalsent> ::= (= <objterm> <objterm>) 
<atomsent>  ::= (<objterm> <term>*) 
<boolsent>  ::= (not <sentence>)|       
                ({and|or} <sentence>*)|   
       ({=>|<=>} <sentence> <sentence>) 
<quantsent> ::= ({forall|exists} 
({<objvar>|<rowvar>}+) <sentence>) 

The SKIF language λΝ   generated by the namespace N is 
simply the set of expressions generated by the above BNF 
when N is the set of all <constant>s.  In particular, the 
expressions generated by <sentence>, <constant>, 
<term>, <objterm>, and <fnterm> are known as the 
sentences, constants, terms, object terms, and function 
terms of λΝ , respectively. 

SKIF Semantics: Informal Discussion 

We begin with an informal discussion of the semantics of 
SKIF.  There are two particularly important features of 
KIF’s proposed syntax that deserve attention: (i) its free 
syntax and its semantics, and (ii) the semantics of row 
variables. 

SKIF’s Free Syntax and Its Semantics 

The model theory for SKIF is very close to a conventional 
model theory for first-order logic, but has a few unusual 
features which arise from the need to cope its free syntax. 
In particular, since any name can be used as a function or 
a relation name, the semantics must assign a truth-value to 
expressions even if their function or relation symbol does 
not denote a function or relation, and it must make sense 
of terms whose function name refers to a relation which is 
not functional. It must also be able to handle self-
application (i.e., an expression where the same name is 
used to refer to a relation or function as to one of its 
arguments.)  

To handle all these issues, SKIF utilizes a basic semantic 
device which associates an extension with every object in 
the domain. The extension of an object is a set of n-tuples. 
The extensions of individuals are always empty. 
Structurally, therefore, in a given model, individuals are 
indistinguishable from relations with empty extensions; 
they are individuals rather than relations with empty 
extensions in the model simply in virtue of having been 
declared to be individuals. 

The basic semantic rule is that an atomic sentence of the 
form (t0 t1 ... tn) is interpreted as true just when the 
extension associated with the denotation of t0 contains the 
n-tuple consisting of the denotations of t1, ..., tn, 
respectively. Sentences whose interpretation would 
violate the “normal”  interpretation rules (such as the use 
of an individual name in a relation position) simply turn 
out to be false, since the relevant extensions fail to supply 
suitable values to make them true.  

Since relations are distinguished from their extensions, 
the extension of a relation may contain the relation itself 
(or an n-tuple which contains it). This provides a way to 
describe self-application without violating the axiom of 



foundation. (Although the model theory is in fact 
completely agnostic about whether relations and 
extensions are distinct. The association could be identity, 
although in that case the models would have be 
understood relative to some non-well-founded set theory, 
in general.  We discuss this issue in more detail below.) 

Notice that while a SKIF interpretation must provide a 
denotation for every term in the language, and hence an 
extension for every term used as a relation or function, 
there is no presumption that the interpretation must 
contain any particular universe of relations. In contrast, 
classical higher-order logic requires that every domain 
contain all relations over the domain of individuals; 
higher-order syntax with the Henkin semantics, while 
expressively only first-order, requires that they contain all 
definable relations. This is why SKIF is not in any sense a 
higher-order logic. In fact, as we will show, SKIF without 
row variables is really only a notational variation of 
conventional first-order logic. 

One other complication needs attention. Since the 
syntactic specification of the classes <atomsent> of 
atomic sentences and <fnterm> of function terms are 
identical, expressions of the form (<pred> <term>*)  can 
be used both to refer to an object (and  hence take on the 
guise of function term in an atomic sentence) and  to 
make an assertion (and hence themselves occur as an 
atomic  sentence).  For instance, suppose that ‘ father-of’  
denotes a 2-place relation, i.e., something whose 
associated extension contains only pairs. If we want to 
attribute some property to Cain’s father, it is convenient 
to use functional notation: 

(gardener (father-of cain)). 

But simply to indicate that Cain’s father is Adam, an 
atomic sentence is preferable: 

(father-of cain adam). 

SKIF follows KIF 3 in allowing both forms. However, 
since SKIF does not declare symbols to be relational or 
functional, there are two potentially troublesome cases to 
consider: when a function is used inappropriately in an 
atomic sentence, and when a term denoting a non-
functional relation is used in a function term. For an 
instance of the first, what if we assert  

(exists (?x) (father-of ?x))? 

The answer is straightforward:  taken as a sentence (as it 
must be here), since ‘father-of’  expresses a 2-place 
(functional) relation, ‘(father-of ?x)’  is simply false 
for all values of ‘?x’  – father-of is not a property of any 

single thing – and hence the quantified sentence above 
evaluates to false as well. 

The second potentially problematic case arises if an 
expression denoting a non-total function or a non-function 
(i.e., a relation which is not functional, or a non-relation) 
is used in a function position in a function term (f t1 … tn).  
In such cases, the term in question will not have a 
“natural”  denotation for at least some values of t1 … tn.  
For instance, if ‘father-of’  denotes the father-of 
relation in a model of the Genesis myth, then  ‘(father-
of adam)’  is undefined, as Adam had no biological 
father.  This is problematic, as undefined terms are not 
permitted in classical logic.  Hence, in such cases, an 
arbitrary value is value is assigned to the function term 
when it occurs in an atomic sentence – we will choose the 
denotation of the term occurring in function position.  
This choice could lead to some odd side-effects – for 
instance, ‘((father-of adam) cain adam)’  and  
‘(exists (?x) (= plus (plus ?x ?x))’  turn out 
true.  However, such side-effects are either innocuous, or 
can be rendered innocuous in an ontology simply by 
restricting the quantifiers in axioms carefully to ensure 
that one is only talking things that are “genuinely”  in the 
range of the function in question.  (The things that are 
genuinely in the range of a function F are simply those 
things b such that 〈a1,…,an,b〉 ∈ ext(F) for some a1,…,an.  
These objects can be identified in SKIF by means of row 
variables:  

 (forall (?r ?y) 
   (=> (relation ?r) 
       (<=> (in-range ?y ?r) 
            (exists (@args) 

                   (?r @args ?y))))). 

The functionality of a relation can be expressed as 
follows: 

(forall (?r) 
  (=> (relation ?r) 
     (<=> (functional ?r) 
        (forall (@args ?y ?z) 
           (=> (and (?r @args ?y) 
                    (?r @args ?z)) 
               (= ?y ?z)))))) 

These two axioms together, then, enable one to identify 
the objects in the range of a function (i.e., functional 
relation) and talk about them alone in axioms involving 
terms that denote that function. 

 



The semantics of row variables 

As noted, like KIF, SKIF allows relations and functions to 
be variably polyadic.  Hence, to capture this fact 
syntactically, the same symbol can legitimately occur in 
predicate position in different atomic sentences with 
different numbers of arguments. To state general 
properties of such relations, one needs to be able to 
quantify over a variable number of things at once.  In 
KIF, this was achieved by assuming that expressions were 
LISP list structures and allowing a form of quantification 
over the ‘ tails’  (CDRs) of these expressions. SKIF uses a 
similar but somewhat more abstract device by allowing 
quantification over arbitrary n-tuples of objects. Such a n-
tuple corresponds to a row of symbols in an expression, 
such as the row of three symbols ‘a b c’  in the 
expression ‘(R a b c d)’ . A row variable has such 
rows of terms as instances in exactly the same way as an 
object variable has single terms as instances, so that the 
above expression would be an instance of  ‘(R @x d)’ . 
Row variables provide a mechanism for talking about the 
series of objects indicated by arbitrary rows of terms, 
without actually putting those series of objects themselves 
in the universe of discourse.  Thus, quantification of row 
variables provides roughly the same expressive power in 
the language as is often achieved informally in the 
metalanguage by the use of three dots to indicate a 
missing sequence of arbitrary length. 

Rows can be thought of simply as a special category of n-
tuples. Several distinctive properties of rows should be 
highlighted here, however.  First, they are finite. Since 
finiteness is not first-order expressible, one might expect 
that introducing a quantifier which ranges over finite 
entities will take the logical language beyond first-order 
expressiveness, and indeed this is the case. Second, a 
singleton row is indistinguishable from its sole element.  
Third, there is no way to include one row as a single item 
in another row: rows have no nested structure, unlike lists, 
sets, or logical terms.  

SKIF Semantics: Formally Speaking 

Rows 

First, some definitions. For any set A, let An be the set of 
sequences of length n of members of A, i.e. functions 
from the set { 0, 1, …, n-1}  of ordinals <n  into A.  (It 
follows that A0 = { ∅}  since the set of ordinals < 0 is 
empty.)  We call the members of An  n-tuples over A. We 
will write the n-tuple { 〈0,a0〉, 〈1,a1〉, …, 〈n-1,an-1〉}  as 
〈a0,a1,…,an-1〉.  In particular, we will sometimes refer to ∅ 
as ‘ 〈〉’  when thinking of it as a 0-tuple. Let A*  be the set 
of all n-tuples over A, for all n, i.e., A*  = 

�

n<ωAn. We will 
call  the members of  A*  tuples over A. We want to 

consider n-tuples in which there is no distinction between 
1-tuple and its (sole) member, so we define an 
equivalence relation ≈ on Α∪Α*  by : 〈x〉 ≈ x, and let A**  
be the set of equivalence classes on Α∪Α*  under  ≈. We 
call the members of A**  rows over A or  A-rows. Notice 
that any element of A constitutes a singleton row (this 
makes the technical statement of the model theory 
somewhat simpler). If s1, …, sn are rows, then cc(s1,…,sn) 
is the concatenation of those rows; that is, the row whose 
length is the sum of the component rows and which 
consists of the elements of those rows in consecutive 
order. Notice that a concatenation of objects is simply the 
row of those objects, so that cc is also the row-forming 
function. We define the value of cc on an empty list of 
arguments to be the 0-tuple 〈〉.  

These conventions have some consequences for the 
semantics. In particular, if a SKIF object expression could 
denote a row, the language would be ambiguous; so we 
impose a semantic restriction that a SKIF domain cannot 
contain the rows that are used in the semantic definition. 
(It may contain isomorphic structures, but they cannot be 
identical.) If this restriction is felt to be onerous, we can 
simply declare rows to be a special category of structures 
declared by fiat to be isomorphic to the rows described 
here, but not defined to be identical to their set-theoretic 
description. 

Interpretations 

Now, let N be an ontology namespace, and let λΝ be the 
language generated by N.  An interpretation of λΝ is a 
triple 〈D,ext,V〉 such that  

• D = E ∪ R is a nonempty set, where E ∩ R is 
empty. 

• ext is a function on D such that, for all r in R, 
ext(r) ⊆ D** , and for all e in E, ext(e) = ∅. 

• V is a function that maps the constants and object 
variables of λΝ into D1 and the row variables of 
λΝ into D** . 

Intuitively, R is the set of relations in an ontology 
(functions are a particular kind of relation, and properties 
can be thought of as 1-place relations), and E is the set of 
individuals.  Thus, ext maps each relation r to its 
extension, i.e., to a set of rows of elements of D.  Notice 
that the lengths of the rows in the extension of a relation 
needn’ t be identical; relations, that is to say, can be 
variably polyadic.  For convenience, individuals are 
assigned an empty extension. Finally, V is the semantical 
mapping from the terms into entities of an appropriate 



sort.  Specifically, V maps constants and object variables 
to objects in the domain of discourse D, and row variables 
into rows, i.e., n-tuples of objects in D.  Since D ⊆ D** , 
i.e., single objects are identical to their singleton rows, V 
can be said to map all terms to rows of objects. 

Truth under an Interpretation 

Several more definitions will be helpful for defining truth.  
First, for an interpretation I = 〈D,ext,V〉, and for any 
variables ν1, …, νn, say that an interpretation I′ =  
〈D,ext,V′〉 is an I-variant on ν1, …, νn if V′ differs from V 
at most in what it assigns to one or more of ν1, …, νn. 
Second, define a relation r to be functional on 〈e1, …, en〉 
just in case there is exactly one object e in the domain of 
discourse D such that 〈e1, …, en,e〉 is in the extension 
ext(r) of r.  

Now let ϕ be an expression of λΝ. We have already 
defined V(ϕ) when ϕ is a name or a variable. But we also 
need to define it for the case when ϕ is a functional term.  
This will be included in the following general definition 
of truth for λΝ. 

1. If ϕ is a functional term (F t1 ... tn), then there are 
two cases to consider. If V(F) is functional, then V(ϕ) 
is the unique e such that cc(V(t1),…,V(tn),e) ∈ 
ext(V(F)); otherwise, V(ϕ) = (V(F)). This latter choice 
is arbitrary, as noted above. 

2. If ϕ is an atomic sentence (P t1 ... tn),  then ϕ is true 
under I , just in case cc(V(t1),…,V(tn)) ∈ ext(V(P)).  

3. If ϕ is (= t1 t2), then ϕ is true under I just in case 
V(t1) = V(t2). 

4. If ϕ is  (not  ψ), then ϕ is true under I just in case ψ 
is not true under I. 

5. If ϕ is (and  ψ1 … ψn), n≥0, then ϕ is true under I 
just in case, for all positive integers i≤n, ψi is true 
under I.  

6. If ϕ is (or ψ1 … ψn), n≥0, then ϕ is true under I 
just in case, for some positive integer i≤n, ψi is true 
under I.  

7. If ϕ is (=>  ψ θ), then ϕ is true under I just in case ψ 
is not true under I or θ is true under I. 

8. If ϕ is (<=>  ψ θ), then ϕ is true under I just in case 
either both ψ and θ are true under I or neither is. 

9. If ϕ is (forall (ν1 … ν n) θ), then ϕ is true under 
I  just in case θ  is true under all I-variants on ν1, …, 
νn. 

10. If ϕ is (exists (ν1 … ν n) θ), then ϕ is true under 
I  just in case  θ is true under some I-variant on ν1, 
…, νn. 

Most of the above is standard; all the originality is in the 
first two clauses. The complexity of the clause for object 
terms arises from the need to specify a semantic value for 
the functional term when it has no intuitively correct 
value, as discussed earlier. Both clauses use the notion of 
a concatenation of rows to form the appropriate n-tuple of 
arguments which is supplied to the function or relation. 
For conventional first-order logical syntax this would be 
needlessly complicated (although correct), but the use of 
row variables requires this much care. Notice that  this 
definition extends to empty rows, so that an atomic 
sentence of the form (P) will be true just in case the 
empty sequence 〈〉 ∈ ext(V(P)). Note also that as special 
cases of clauses 5 and 6, ‘(and)’  is vacuously false, and 
‘(or)’  vacuously true, under any interpretation. 

Extensional and intensional interpretations 

This semantics makes a conceptual distinction between 
relations and their extensions. This has a number of 
technical advantages, notably that of giving a denotation 
to expressions involving circular applications, such as (in 
the most extreme case) 

(R R) 

This is true under I just in case I(R) denotes e and e ∈  
ext(e), which of course is quite an unexceptionable 
condition. However, if we were to insist that relations 
were identical to their extensions, this would amount to 
the requirement that e ∈ e, in direct contradiction with the 
axiom of foundation. There are several possible responses 
to this observation, and the authors do not agree on which 
is preferable. They do agree, however, that a merit of the 
SKIF model theory is that it is entirely agnostic about 
which stance to take. 

On one view, to distinguish between relations and their 
extensions is philosophically proper, and so nothing more 
needs to be said; particularly as the SKIF model theory 
can be derived from a more conventional Tarskian 
interpretation of a sublanguage, as we show below.  

On another view, it is proper to think of relations in a 
first-order model theory as being identical with their 



extensions. This can be partly expressed by an axiom of 
extensionality: 

(forall (?r ?s) 
    (=> (forall (@x)(<=>(?r @x)(?s @x)))  
        (= ?r ?s))) 

which asserts, in effect, that ext is 1-to-1; call this a 
weakly extensional interpretation, and an interpretation in 
which ext is identity a strongly extensional interpretation. 
There is no way in SKIF to write an axiom which 
guarantees strong extensionality, but on the other hand 
any weakly extensional interpretation defines a strongly 
extensional one in which every sentence has the same 
truth value, so if strong extensionality is considered 
desirable, it may be imposed by stipulation. The cost, of 
course, is that one has then to understand the entire 
semantic description relative to a “non-well-founded”  set 
theory which rejects the axiom of foundation, such as that 
described by Peter Aczel (1988). This makes no 
difference to the actual model theory as stated, but some 
may find the conceptual burden too much to bear.  

To sum up, there are three options regarding the 
interpretation of the semantics. A nonextensional 
interpretation, or weak extensionality, are always options; 
if one wishes to impose strict extensionality, and if the 
language being considered uses circular application, then 
one must interpret the model theory relative to a non-
well-founded set theory.  The formal properties of SKIF 
and its model theory work the same way in all three cases. 

Extensions to SKIF 

The SKIF language described here is a minimal language; 
we envision that the final form of SKIF will contain 
several syntactic extensions designed for ease of use. A 
complete version of the language will be given elsewhere, 
but currently proposed extensions include, but are not 
limited to, the following. Only the last one changes the 
essential logical character of the language. 

Documentation wrappers 

The language will have special syntactic forms for 
attaching documentation strings and other “ tags”  to 
expressions and assertions. (Although logically trivial, 
this complicates the syntax since such strings may contain 
otherwise “ illegal”  characters.) We also expect to define 
the language to allow Unicode character strings in the 
UCS-2 subset, making it more appropriate for 
international use. 

Restricted quantification 

Restrictions on quantifiers can be written inside the 
quantifier syntax, so that for example one can write 

(forall (?x (human ?x)) (bipedal ?x)) 

in place of  

(forall (?x)(=>(human ?x)(bipedal ?x))) 

Class heirarchies and sorting 

SKIF follows normal logical practice in treating 
properties as unary relations, but deviates from the usual 
first-order logical tradition by also treating them as 
objects. Other languages treat properties as classes,1 and 
some logical languages allow certain classes to be 
distinguished as “sorts”  (where sort membership can be 
checked by the parser without performing general 
inference.) 

 Much of this can be axiomatized within SKIF as 
described here, but a fuller version of SKIF will provide 
syntactic devices to allow the user to specify sort 
information in a uniform framework.  

Namespaces and importation 

We will provide syntactic machinery for declaring 
namespaces, maintaining namespace separation, and 
importing ontologies from remote sources (such as web 
sites or external files). None of these change the basic 
logical properties of the language. However, some 
extensions are proposed which do give the language 
significantly greater expressive power, particularly a 
meta-extension: 

Meta-extension 

This will provide syntactic machinery for describing and 
quantifying over linguistic expressions, including those of 
the language itself, and for asserting the truth of such 
expressions. We expect to use the ‘wtr’  predicate from  
KIF as a suitable truth predicate to avoid the well-known 
paradoxes. 

                                                           

1 We here use ‘class’  as the term is used in the description 
logic literature; cf. (McGuinness & Patel-Schneider 1998) 
not in the sense of  ‘proper class’  from set theory. 



Mapping SKIF into conventional logic 

SKIF can be mapped into a more conventional logical 
language in two stages. We first describe an embedding 
from SKIF into a restricted SKIF language which has a 
conventional clear distinction betwen object, function and 
relation symbols of fixed arity, and then give a further 
truth-preserving mapping from SKIF into a similar logic 
without row variables. These mappings provide an 
intuitively useful account of SKIF, establish its basic 
logical properties, and illustrate how the semantic 
complexities (notably the relation/extension distinction 
and the central use of row-concatenation) arise.  

Holding and applying 

To “ tidy up”  the free syntax of SKIF we utilize a familiar 
trick for writing “higher-order”  syntax into a first-order 
notation, which makes use of a denumerable set of special 
relations Holds-0, Holds-1, ... and function symbols 
App-0,App-1,... (one for each natural number), and, 
for a given sentence ϕ we simply rewrite every term 
occurrence of an expression of the form 

  (t0 t1 ... tn)  

as 

  (App-n t0 t1 ... tn) 

and every sentential occurrence as 

  (Holds-n t0 t1 ... tn), 

with these translations applied recursively to every 
subexpression in the obvious way. If θ (or λΝ ) is an 
expression (or a language on N), let H(θ) (or H(λΝ) ) be 
the expression (or language) defined by the above 
translation; we will call this the holds expression 
(language) corresponding to θ (λΝ) . 

In any holds language, all the symbols of the original 
SKIF language have become individual names; all the 
function, relation and individual names are distinct, and 
each function symbol and relation symbol has a unique 
arity; and no variables or nonatomic terms occur in the 
relation or function position. Apart from the presence of 
row variables, therefore, a holds language is a 
conventional first-order language.  To prove this, it can 
easily be shown that any interpretation I of an SKIF 
language can be transformed into a standard first-order 
interpretation I*  of the corresponding holds language in a 
truth preserving way (i.e., sentences of SKIF have the 

same truth value in I that their counterparts under H have 
in I*). 

SKIF and Infinitary Logic 

As noted, row variables extend SKIF’s expressive power 
beyond that of simple first-order logic.  Specifically, they 
give it the expressive power of an infinitary sublanguage 
of the infinitary logic Lω1ω.  In this section we make this 
explicit. 

To keep the exposition simple, we will first define a truth-
preserving mapping from SKIF to an infinitary logic 
without row variables. The resulting language retains the 
other odd features of SKIF, such as variable polyadicity, 
so is not strictly a sublanguage of Lω1ω, but if this 
mapping is composed with the transformation H 
described in the previous section, the result is strictly 
within Lω1ω. We will call this mapping K; the mappings 
H and K commute.  

The intuitive idea of the K mapping is that any instance of 
a row variable @x is also a row of instances of a row of 
object variables ν1 ... νn, so the effect of universally 
quantifying a row variable can be obtained by conjoining 
an infinite series of expressions representing all the 
possible universal quantifications of those rows using 
object variables; and similarly , of course, by disjoining 
such a series for an existential quantifier. An expression 
of the form  

(forall (@x)(foo @x)) 

thus will map into an infinite conjunction of the form  

(and (foo) 
     (forall (?x1)(foo ?x1)) 
     (forall (?x1 ?x2)(foo ?x1 ?x2)) 
     (forall (?x1 ?x2 ?x3) 
             (foo ?x1 ?x2 ?x3)) 
      ...) 

To state this formally it is convenient to assume that  row 
quantifiers are treated separately, with each quantifier 
binding only a single row variable. Obviously every 
expression has an equivalent expression in this row-
separated form.  

Let λΝ be a SKIF language in row-separated form. We 
will map λΝ into an infinitary language ΛΝ  over the same 
vocabulary. The complex formulas of ΛΝ will be as usual 
for such a language; specifically, ΛΝ allows countable 
conjunctions and disjunctions (but only finite quantifier 
strings). Given a countable set S of formulas of ΛΝ, we 
will indicate their conjunction by ∧S and their disjunction 



by ∨S.  If S is indexed by the finite ordinals, we will 
indicate the conjunction of the members of S by ∧i<ωS and 
their disjunction by ∨i<ωS. 

For any SKIF expression θ and for any row variable ρ and 
object variables ν1, …, νm, let  θ [ρ/ν1 … νm] be the result 
of replacing every occurrence of ρ in θ with the row  ν1 
… νm. (Notice that this refers to all occurrences of ρ , 
even those inside quantifiers.) Then the translation 
scheme K from λΝ into ΛΝ  is defined recursively as 
follows:  

• If ϕ is any word, then K[ϕ] = ϕ.  

• if ρ is a row variable and ϕ is (forall (ρ) ψ), 
then K[ϕ] = 
∧m<ω{(forall(ν1 … νm)K[ψ[ρ/ν1 … νm]]) } , 
where, for each m<ω, ν1, …,  νm are the m 
alphabetically earliest object variables that do not 
occur in ψ. 

• If ρ is a row variable and ϕ is (exists (ρ) ψ), 
then K[ϕ] =  
∨m<ω{(exists(ν1 … νm)K[ψ[ρ/ν1 … νm]])}  , 
where, for each m<ω, ν1, …,  νm are the m 
alphabetically earliest object variables that do not 
occur in ψ. 

• Otherwise, K[ϕ] is the expression got by applying K 
to every well-formed  immediate  subexpression of ϕ.  

It is easy to see that K is truth-preserving: the statement of 
the truth-conditions for universal row quantification refer 
to all finite rows, which can be transcribed directly into 
the truth-conditions for the infinitary conjunction, each of 
whose conjuncts states the analogous condition for one of 
the possible finite lengths of the row; and similarly for the 
existential case.  

It is almost equally clear that the full meaning of the row 
quantifier could not be captured by any finite 
subexpression, since any such expression would omit 
some case that might falsify the infinite conjunction. 
Hence the row quantifiers take the language beyond strict 
first-order definability. We have not yet fully investigated 
the extent to which this extra expressiveness may take the 
language, but some facts are clear. 

Given any SKIF language, applying both the mappings K 
and H (in either order) yields a sublanguage of the well-
known infinitary logic Lω1ω. However, these mappings 
only utilize a sublanguage of Lω1ω , which we will call  
SKIFω1ω, rather than the full language, and there is some 

hope that this sublanguage may be computationally more 
tractable than full Lω1ω.  

Lω1ω allows arbitrarily complex conjunctions and 
disjunctions, while SKIFω1ω only uses a highly 
simplified subcase in which each component can be 
generated from the previous one by a simple addition of 
one new variable. We have not yet fully investigated the  
tractability of the SKIFω1ω sublanguage relative to Lω1ω, 
but there is some hope that computationally useful 
properties may be obtained. Lω1ω itself is among the 
more tractable infinitary languages, and for example 
admits a completeness theorem from countable sets of 
premises. To illustrate the problems, however, we note 
that skolemisation is not possible in general for row 
quantifiers, as can easily be seen by applying the K 
mapping to a  sentence containing an existential row 
quantifier inside the scope of a universal row quantifier.  

A Useful Sublanguage and Its Limitations 

The fact that SKIF (and indeed KIF, as may be easily 
checked by considering a similar mapping from sequence 
variables into Lω1ω) is not first-order, may be reasonably 
considered to be Bad News.  Moreover, the generalization 
of KIF sequence variables to SKIF row variables, 
although theoretically cleaner, has some computational 
disadvantages, since the use of row variables in general 
position makes unification very difficult: because row-
concatenation is associative, simple pairs of expressions, 
such as ‘(r a @x)’  and ‘(r @x a)’ , may have infinitely 
many most general unifiers. However, there is a restricted 
sublanguage of SKIF which avoids most of these 
difficulties and but may still be of general utility, which 
we will call “schema form”  since it corresponds to the use 
of schemas in first-order logic. 

An SKIF sentence is in schema form if row variables are 
(1) restricted to universal quantifiers at the top level of 
any assertion (i.e., not within the scope of any expression 
other than a universal quantifier), and (2) only occur in 
the final position of any atomic sentence or relational 
term and (3) if the sentence is used only as an assertion, 
and never posed as a theorem to be proved.  

The second restriction makes row variables similar in 
usage to sequence variables in KIF, i.e., they always 
intuitively refer to the “ tails”  of argument lists. In practice 
this is not usually felt to be an onerous restriction, 
although it does sometimes force axioms to be written in a 
more complex style. It has the merit of guaranteeing that 
unification patterns that create the above-mentioned 
difficulties cannot arise. (There may be less restrictive 
conditions which also supply such a guarantee: we have 
not investigated this in detail.) 



The first restriction is rather more dramatic, in that it 
makes this sublanguage first-order expressible. To see 
this, notice that any such “ top-level”  universal 
quantifications can be mapped by K into a top-level 
infinitary conjunction, which in turn is equivalent to an 
infinite set of first-order sentences. By the compactness 
theorem, any consequence of this set is also a 
consequence of some finite subset of them, so this infinite 
set can be treated as strictly first-order, when used as an 
assertion. (Notice however that this argument would 
break down if the sentence were posed as a theorem, since 
it could only be proved from an infinite number of 
premises.) Since free variables in assertions are taken to 
be universally quantified, an assertion in schema form 
may be thought of as having only free row variables. 
Notice also that skolemisation can be applied to 
expressions in schema form, uisng a polyadic skolem 
function: 

 (forall (@r) (exists (?x)(...?x...)  

can be transformed into  

(forall (@r) (... (f @r) ...) 

All this amounts to the observation that a first-order 
schema does not extend the language beyond first order if 
it used solely as a “source”  of axioms, standing in place of 
a recursively infinite set of assumptions. Schema form 
provides a general-purpose notation for writing 
computationally tractable first-order schemas in this 
sense, and also makes clear their expressive limitations.  

In particular, notice that there is no way to describe the 
integers, or to guarantee finiteness, using such a schema. 
For example, since rows are defined to be finite, one 
might think that one could use unary arithmetic to define 
integers, using a row of length n as a numeral to represent 
the number n. It is indeed easy to write the relevant 
axioms in SKIF: 

(equinum 0)  

(forall (@r ?x ?y) 
        (<=> (equinum (succ ?x) ?y @r) 
             (equinum ?x @r))) 
 
(<=> (finite ?x)  
     (exists (@r)(equinum ?x @r))) 

but, as is easily checkable, the final biconditional cannot 
be put into schema form.  

In general, the common use of “ recursive”  definitions in 
SKIF (and KIF), as in the second axiom above, is always 
hostage to the expressive limitations of the language. If 

row quantification is considered to be part of the 
language, then finiteness is expressible and such recursive 
definitions can be considered to be fully specified; but if 
the language is restricted to first-order, then the language 
cannot possibly express their full import. Just as with 
schemas, they can be considered to be “generators”  of an 
infinite set of first-order axioms, but this only provides a 
lower bound on their first-order models, and cannot rule 
out nonstandard models in which quantification over the 
“ recursively defined”  constructs (integers, in the above 
case) also range over nonstandard elements which would 
be excluded by a least-fixed-point semantics or by the 
expressive power of an infinitary logic. So for example, 
the definition of lists in KIF (reference KIF3 manual) is in 
fact incomplete, in that it fails to restrict the models to 
only the finite lists.  
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